Coherent Momentum Exchange above and within a Scots Pine Forest
نویسندگان
چکیده
Biorthogonal decomposition (BOD) is used to detect and study synchronous coherent structures occurring at multiple levels in the vertical momentum flux (u1w1) within and above a planted Scots pine forest during a 12-week continuous measurement period. In this study, the presented method allowed for the simultaneous detection and quantification of the number of coherent structures (N), their duration (D) and separation (S) at five measurement heights (z1–z5) covering the range z1/h = 0.11 to z5/h = 1.67, with h being the mean stand height at the measurement site. Results presented for five different exchange regimes (C1–C5) and for four different atmospheric stability conditions (stable, transition to stable, near-neutral, forced convection) demonstrate that during the measurement period, above-canopy momentum flux was only to a limited extent involved in the evolution of spatiotemporal momentum flux patterns found within the below-canopy space. Fully-coupled turbulent momentum exchange over the investigated height range occurred during 19% of all analyzed half-hourly datasets. Across the analyzed exchange regimes, the median contribution of strong sweeps and ejections to total momentum transfer above the canopy varied between 30% and 39% while covering 28%–32% of the time. In the below-canopy space, the contribution of coherent structures varied between 19% and 21% while covering the same amount of time. This suggests that momentum transfer through synchronous coherent structures is very efficient above the forest canopy, but attenuated in the below-canopy space. Since the majority of the presented results agrees well with the results from previous studies that analyzed coherent structures at single levels, the BOD is a promising tool for the consistent investigation of synchronous coherent structures at multiple measurement heights.
منابع مشابه
Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances
Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species' lar...
متن کاملModelling short-term variability in carbon and water exchange in a temperate Scots pine forest
Introduction Conclusions References
متن کاملAnalysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign
Intermittent coherent structures can be responsible for a large fraction of the exchange between a forest canopy and the atmosphere. Quantifying their contribution to momentum and heat fluxes is necessary to interpret measurements of trace gases and aerosols within and above forest canopies. The primary objective of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field camp...
متن کاملNitrogen balance of a boreal Scots pine forest
Nitrogen balance of a boreal Scots pine forest J. F. J. Korhonen, M. Pihlatie, J. Pumpanen, H. Aaltonen, P. Hari, J. Levula, A.-J. Kieloaho, E. Nikinmaa, T. Vesala, and H. Ilvesniemi Department of Physics, P.O. Box 48, 00 014, University of Helsinki, Finland Department of Forest Sciences, P.O. Box 27, 00 014, University of Helsinki, Finland Hyytiälä Forestry Field station, Hyytiäläntie 124, 35 ...
متن کاملPinus sylvestris as a missing source of nitrous oxide and methane in boreal forest
Boreal forests comprise 73% of the world's coniferous forests. Based on forest floor measurements, they have been considered a significant natural sink of methane (CH4) and a natural source of nitrous oxide (N2O), both of which are important greenhouse gases. However, the role of trees, especially conifers, in ecosystem N2O and CH4 exchange is only poorly understood. We show for the first time ...
متن کامل